<listing id="ztfer"><dd id="ztfer"><bdo id="ztfer"></bdo></dd></listing>
      <legend id="ztfer"><em id="ztfer"><option id="ztfer"></option></em></legend>
      <th id="ztfer"><address id="ztfer"></address></th>
      <listing id="ztfer"><progress id="ztfer"><listing id="ztfer"></listing></progress></listing>
      <listing id="ztfer"></listing>
      <legend id="ztfer"><em id="ztfer"><track id="ztfer"></track></em></legend>
    2. <listing id="ztfer"></listing>
      當前位置: 華中科技大學數學與統計學院 > 科學研究 > 學術活動 > 正文



      2019-12-25 09:32:14    瀏覽次數:

      字體 色彩方案
      報告人:李景治 教授(南方科技大學)

      報告題目:Numerical method for random Maxwell interface equations

      報告摘要:We present in this talk how to compute the mean field and variance of solutions to three-dimensional Maxwell's equations with random interfaces via shape calculus and pivoted low-rank approximation. Based on the perturbation theory and shape calculus, we characterize the statistical moments of solutions to Maxwell'sequations with random interfaces in terms of the perturbation magnitude via the first order shape-Taylor expansion. In order to capture oscillations with high resolution close to the interface, an adaptive finite element method using Nédélec's third order edge elements of the first kind is employed to solve the deterministic Maxwell's equations with the mean interface to approximate the expectation of solutions. For the second moment computation, an efficient low-rank approximation of the pivoted
      Cholesky decomposition is proposed to compute the two-point correlation function to approximate the variance of solutions. Numerical experiments are presented to demonstrate our theoretical results.